
© Thomas William Beale 2010

Thomas Beale
CTO Ocean Informatics

Chair ARB openEHR Foundation

Zurich
25 Nov 2010

© Thomas William Beale 2010

About me...

 B Elec Eng, B Comp Sci
 6y distributed real time systems (CMM level 4)
 16y health and finance (CMM level 0.5)
 Main author of openEHR specifications
 Author of ‘Archetype Definition Language’ (ISO 13606-2)
 Using Eiffel since 1988

© Thomas William Beale 2010

© Thomas William Beale 2010

Developers We all like CONVENIENCE

Sometimes just perceived– i.e.
short-term gain over long-term
value...
May also have deep consequences

Let’s talk about convenience...

© Thomas William Beale 2010

Too convenient to notice?

C13

1970s

1989

© Thomas William Beale 2010

“Modern Life” - Stone age

© Thomas William Beale 2010

“Modern Life” - Bronze Age

© Thomas William Beale 2010

“Modern Life” - Iron Age (2008)

© Thomas William Beale 2010

“Modern Life” - 2010

© Thomas William Beale 2010

“Modern Life” – 2012?

© Thomas William Beale 2010

Finance: Mandate Compliance System
Health: openEHR Specifications
Health: Archetype compiler for e-health

© Thomas William Beale 2010

First view of Eiffel - 1988

 Leeds & Northrup (now Foxboro) SCADA real time
control systems

 Motorola 68000 assembler and C
 IEEE standards-based engineering
 ~CMM 4 environment
 Ordered Eiffel 2 for Interactive Unix in 1990(?)
 Considered for adoption as reliable language /

technology to replace C
  probably too early for the tools and libraries

© Thomas William Beale 2010

Good European Health Record (GEHR)

 1992-1995
 3 million ecu (old style €)
 Most comprehensive work on specifications for

electronic health records (EHRs) in the world to date
 Eiffel 3.x (?) on Sun workstation to:

 Express and compile (i.e. validate) object model of
interoperable EHR

 Generate out MML (FrameMaker markup language)
form of classes  integrate with main Frame document

  Del 19 of GEHR,
 Influenced all later EHR standards

© Thomas William Beale 2010

Finance: Mandate compliance system

 First version: 1998 – 1999
 ‘renovation’: 2006-2007
 Customer = Australia’s largest insurance company
 O(10) specialised users – fund managers
 O(100) funds, some very large: O($1b AUD)
 Each fund has a ‘mandate’ – legal def of acceptable Tx
 Mandate could be 30 rules
 ‘rule’ includes scalar and vector quantities

© Thomas William Beale 2010

Design Approach

 Team: lead + 4 new devs (who did Eiffel course)
 Created a rule language, using Gobo lex/yacc tools
 Rule execution server (24x7)
 Admin tools, communicate via EiffelNet
 Rule editor GUI tool - EiffelVision
 Matisse DB
 ‘Ostore’ binding: DB model based on class model

 Including mapping from Eiffel container types to native
Matisse container types
  C# or Java programme will see same objects properly

 Open source; available at http://www.openEHR.org SVN

http://www.openehr.org/�

© Thomas William Beale 2010

Outcomes

 Development characteristics:
 263 Eiffel classes
 2000 lines of C code
 Early version of archetypes saved customer $1m

 Deployment characteristics:
 Eiffel + Ostore + Matisse works;
 EiffelNet slightly arcane, but works fine
 EiffelBuild painful to develop and maintain visual

aspects, but allows ‘real’ app to be built
 Performance fine

© Thomas William Beale 2010

E-Health – openEHR

 2000 -
 The specifications + infrastructure (mainly UK-based

work): 34,832 h, or 18.5 person years; add e.g. 50%
overhead for other staff time plus infrastructure setup
and maintenance and institutional overhead cost =>
£2.72m.

 Open source software (various countries): 44,000h, or
23 person years, which at the 50% overhead rate would
cost £3.5m.

 Archetypes (Europe, Australia): 13,870h, or 7.2 person
years, cost at the 50% overhead rate at *1.5 = €1.08m
(converted to £0.94m)

© Thomas William Beale 2010

openEHR specifications
27 specifications
~1500 pages
Eiffel-inspired

Used in:
•Australia
•Sweden
•Singapore
•Slovenia
•Slovakia
•UK
•Brazil

1 ISO standard

© Thomas William Beale 2010

openEHR specifications (look closely)

© Thomas William Beale 2010

openEHR specifications

© Thomas William Beale 2010

openEHR specifications

© Thomas William Beale 2010

openEHR specifications

© Thomas William Beale 2010

Outcomes
 Developers love the specifications

 Partly because of good explanatory material
 Partly because of the contracts

 In 10 years, no-one ever complained about:
 eiffel: STYLE
 Generic types
 Anchored types
 ‘Current’
 Contracts
 Argumentless functions with no ‘()’

 Occasional complaint about MI
 Implemented in Java, C#, Eiffel, XSD, Python, Ruby

© Thomas William Beale 2010

Archetype language and compiler

 Includes parsers for:
 Archetype Definition Language (ADL)

 cADL (Constraint ADL)
 dADL (Data ADL)
 Xpath-like assertions

 Compilation engine including
 Validator
 Flattener
 Serialisers

 Object Meta-Model library
 GUI app (EiffelVision)

© Thomas William Beale 2010

dADL – an XML replacement

 Half the size
 Supports

 ‘Basic’ types, including:
 Primitive types
 Date, time, date_time, duration
 List<any atomic basic type>
 Interval<any comparable basic type>

 Hashes, arrays, lists of complex objects
 Shared objects, referenced by paths

© Thomas William Beale 2010

dADL – basic structure

© Thomas William Beale 2010

© Thomas William Beale 2010

dADL – dynamic subtyping

© Thomas William Beale 2010

dADL – shared objects

© Thomas William Beale 2010

dADL – paths (Xpath-convertible)

© Thomas William Beale 2010

BMM model

© Thomas William Beale 2010

Basic Meta-Model (BMM)

© Thomas William Beale 2010

Archetype Definition Language

 Archetypes are a kind of constraint model with respect
to an underlying object model
 With inbuilt semantic overloading
 And terminology
 And links to ontologies

 Formally understood as an F-logic query or a subset of
an Powerset in an N-dimensional instance space

 Enables ‘valid’ object structures to be defined by
domain specialists

 Is a domain-independent language that allows domain
specific models to be written over an object model

© Thomas William Beale 2010

cADL text

© Thomas William Beale 2010

© Thomas William Beale 2010

Specialisation

© Thomas William Beale 2010

Specialisation

© Thomas William Beale 2010

Semantics

Redefinition

Addition

Ordering

© Thomas William Beale 2010

Templating

Removals

Mandatory

© Thomas William Beale 2010

© Thomas William Beale 2010

Outcomes

 Open source libraries for:
 dADL parser
 Data Tree (like a DOM tree)
 Dadl object de/serialiser
 ADL parser & compiler
 Basic Meta-model library

 ADL in wide use in health, including by Swedish and
Australian governments

 Eiffel basic concepts like ‘flattening’ and invariants
greatly eased the intellectual development

© Thomas William Beale 2010

Key conclusions for IT in general

 In information and process rich domains, modelling
either in the class model is out of the question

 The class model on which back-end software and
databases are based can only include domain-invariant
concepts

 Systems must be able to consume domain-variant
definitions (archetypes and templates)

 Archetypes are used for gathering requirements – they
are written by the domain experts, rather than IT
people

© Thomas William Beale 2010

How to think about Development technologies

© Thomas William Beale 2010

Social recognition
community

ideology
fame

Deployment interpreted
JVM

cloud
Upgrading easy?

iPhone

Judging development technologies...

Construction Experience

Frameworks Persistence
XML

Web &WS

GUI

Integ. with other langs.

IDE GUI builder
debugger

TDD
Fast compilation

Formalism
Semantic powerDirect map of design

© Thomas William Beale 2010

The big picture

User
Experience

performance
availability

reliability
robustness

Ownership
Experience

maintainability

extensibility

cost
Formalism

IDE

Frameworks

Deployment

Construction
Experience

Social

© Thomas William Beale 2010

Key value determinants

User
Experience

performance
availability

reliability
robustness

Ownership
Experience

maintainability

extensibility

cost
Formalism

IDE

Frameworks

Deployment

Construction
Experience

Social

© Thomas William Beale 2010

What most developers care about

Formalism

IDE
Frameworks

Deployment

Construction
Experience

Utilisation
Experience

Ownership
Experience

Social

CONVENIENCE

© Thomas William Beale 2010

What engineers care about

IDE

Frameworks

Deployment

Formalism

Construction
Experience Utilisation

Experience

Ownership
Experience

Huh?

DELIVER & MAINTAIN

© Thomas William Beale 2010

What business cares about

Utilisation
Experience

Ownership Experience

$$$

© Thomas William Beale 2010

Conclusion:
 Many developers care most about the things that have

the least impact on value and quality, and most on the
immediate experience

 Engineering-minded people care about value
determinants particularly relating to the delivered
system and its maintenance

 Business cares about the Total Cost of Ownership /
Return on Investment

 Formalism, frameworks and deployment most heavily
implicated in final value

 Formalism biggest determinant of ability to do good
design

© Thomas William Beale 2010

Conclusion:

 YET... in many organisations, the existing developers
and the developer skills available on the market decide
the development technology...

© Thomas William Beale 2010

A very formal love affair

© Thomas William Beale 2010

Social

The convenience of Eiffel

Formalism

IDE

Frameworks

Deployment

© Thomas William Beale 2010

Language features we forget...

 Uniform reference:
 {PERSON}.name, not ‘name()’
 Client code doesn’t break if you change

implementation from computed to stored
 Multiple inheritance:
 No strange ‘extends’ v ‘implements’ rule
 No broken memory struct mishaps
 No fear or loathing
 Eiffelists use it EVERYWHERE

© Thomas William Beale 2010

Language features we forget...

 Anchored types:
 Intuitive, formally correct
 Smaller specifications

© Thomas William Beale 2010

Language features we forget...

 Agents (simple form)
 tree_iterator.do_until_surface (agent

node_validate, agent node_validate_test)
 (remember the pain before)?

 And the beautiful, but eclectic older sister:
 tree_iterator.do_all (agent

node_enter_action(?,?), agent
node_exit_action(?,?))

© Thomas William Beale 2010

Features we will forget soon...

 Iterator loops:
 across my_list as ic loop print (ic.item) end

 Void safety
 Threading / SCOOP features

The last 2 may be key determiners of
long-term value

© Thomas William Beale 2010

Language features we never miss

 Jump statements
 Function overloading

 No, they are not the same functions!!

 Static global functions
 Interface-mania
 Uncontrolled type casts
 And of course

 ... pointers

© Thomas William Beale 2010

Things we never forget - DbC

Ever-present
Clarifies semantics of software
Reduces bug diagnosis time to nearly zero
Will probably save lives one day
But is it really understood?

© Thomas William Beale 2010

Design by Contract

 Scala and DbC:
 On Thu, Jul 8, 2010 at 10:57 AM, David Pollak

<feeder.of.the.bears@gmail.com> wrote:
Jann,
I was a fan of DbC until I started using Scala. One of the
things that drove me out of the Ruby community was
the absolute unwillingness to add DbC concepts to the
language (my thought was that if optional static typing
was not on the table, at least support DbC at the
language level [there was a library for DbC but the
syntax was not inviting.]) [REF]

mailto:feeder.of.the.bears@gmail.com�
http://www.scala-lang.org/node/6958�

© Thomas William Beale 2010

Design by Contract

 From online O’Reilly book:
 Scala doesn’t provide explicit support for Design by

Contract, but there are several methods in Predef that
can be used for this purpose. The following example
shows how to use require and assume for contract
enforcement. [REF]

 A drawback(!!!) of using these methods and Ensuring is
that you can’t disable these checks in production

http://programming-scala.labs.oreilly.com/ch13.html�

© Thomas William Beale 2010

Design by Contract

 From online O’Reilly book:
 These days, the goals of Design by Contract are largely

met by Test-Driven Development (TDD). However,
thinking in terms of Design by Contract will
complement the design benefits of TDD. If you decide to
use Design by Contract in your code, consider creating a
custom module that lets you disable the tests for
production code.

 They are clearly unclear (!) on DbC v TDD
 Did they mention it out of guilt?!
 ...many people still think DbC is a way of testing...

© Thomas William Beale 2010

Design by Contract v TDD

 But....
 DbC is a mathematical specification of a valid domain

(input state space) with respect to a routine of a TYPE
 TDD is development with parallel creation of specific

points in the value space (test cases) with which to test
routine on an instance

 it is not a substitute,
 Mathematically: intensional v extensional definition
 Because client programmers don’t see it, and therefore

don’t write better code
we need both

© Thomas William Beale 2010

Why the formalism is important

 In Eiffel, the cognitive distance between the designer’s
mental model and the formalism is small.
  conceive mental model  write ‘code’

 In Java (), C# (), Python (hmm), XSD (), ... the
cognitive distance is high, and the designer spends a
lot of time:
 Fighting the formalism
 Destroying their mental design model
  there is no place where a clean version of their design

is recorded!
 Eiffel = thinking straight into the formalism (mostly)

© Thomas William Beale 2010

Technology war (just for fun)

EiffelEclipse MS LAMP

Social

Formalism

IDE

Frameworks

Deployment

  

  

  

  

 Huh? 









hmm

© Thomas William Beale 2010

What now?

© Thomas William Beale 2010

What we need to work on

Eiffel

Social

Formalism

IDE

Frameworks

Deployment









hmm

Visual GUI Builder

Lacking...

Easy XML Schema F/W
Easy Web F/W
Good Java integration (JNI)

Better pseudo-UML renderer

VM, interpreted mode

Modern web 2.0 community
It is hard to share code...

© Thomas William Beale 2010

Outlook

 It is no longer about languages, it is about
 Development technologies

 Developer experience
 Frameworks

 Solution deployment capability, including upgrading
 It is not about community (in the old Usenet sense), it

is about:
 ‘Social coding’
 Meritocracy
 Disruption

© Thomas William Beale 2010

Social aspects

 Establish a new identity and a new .org
 Create a full community web-presence

 Website
 Wiki with coherent, maintained documentation
 Mailing lists
 Coding projects:

 Set it up like GitHub, SourceForge, CollabNet etc
 My favourite: Atlassian: Jira, Confluence, build server,

Mercurial

 Blogs (EiffelRoom etc)
 Feed in ETHZ and other great work

© Thomas William Beale 2010

Tooling

 UML has not turned out to be the killer app of
development; most still use it only for drawing

 However, the ‘square box’ rendering is here to stay
  improve the UML rendering, and break any rules

that seem convenient, i.e. Make it a pseudo-UML tool

© Thomas William Beale 2010

Deployment

 A JVM competitor is not out of the question
 Interpreted Eiffel – still a popular idea
 Consider an Eclipse-like plug-in architecture

© Thomas William Beale 2010

Frameworks

 A competitor to Eclipse EMF would be easy, and
industry is dying for it

 Creating and connecting to a web service needs to be
easy

 Dealing with XSDs/Schematron needs to be easy

© Thomas William Beale 2010

Conclusion

 Eiffel has the Language covered, and delivers well on
the main value proposition

 But due to industry irrationalism, the people who ‘get’
this don’t choose the development tools or process

 We have to think about appealing to people who want
instant gratification and community...

 And give it to them!

	Eiffel in the real world
	About me...
	First, some psychology
	Developers We all like CONVENIENCE
	Too convenient to notice?
	“Modern Life” - Stone age
	“Modern Life” - Bronze Age
	“Modern Life” - Iron Age (2008)
	“Modern Life” - 2010
	“Modern Life” – 2012?
	Past
	First view of Eiffel - 1988
	Good European Health Record (GEHR)
	Finance: Mandate compliance system
	Design Approach
	Outcomes
	E-Health – openEHR
	openEHR specifications
	openEHR specifications (look closely)
	openEHR specifications
	openEHR specifications
	openEHR specifications
	Outcomes
	Archetype language and compiler
	dADL – an XML replacement
	dADL – basic structure
	Slide Number 27
	dADL – dynamic subtyping
	dADL – shared objects
	dADL – paths (Xpath-convertible)
	BMM model
	Basic Meta-Model (BMM)
	Archetype Definition Language
	cADL text
	Slide Number 35
	Specialisation
	Specialisation
	Semantics
	Templating
	Slide Number 40
	Outcomes
	Key conclusions for IT in general
	Present
	Judging development technologies...
	The big picture
	Key value determinants
	What most developers care about
	What engineers care about
	What business cares about
	Conclusion:
	Conclusion:
	The attractions of Eiffel
	The convenience of Eiffel
	Language features we forget...
	Language features we forget...
	Language features we forget...
	Features we will forget soon...
	Language features we never miss
	Things we never forget - DbC
	Design by Contract
	Design by Contract
	Design by Contract
	Design by Contract v TDD
	Why the formalism is important
	Technology war (just for fun)
	Future
	What we need to work on
	Outlook
	Social aspects
	Tooling
	Deployment
	Frameworks
	Conclusion

