
© Thomas Beale 2010

Thomas Beale, for San Diego, Sep 2011

DCMs and the Reference 
Model



© Thomas Beale 2011

[note]

• Slides 3-9 identical to DCM_and_datatypes
slides



© Thomas Beale 2011

Assumptions

• DCMs are based on an underlying model 
(ULM), rather than each being an 
independent model (e.g. Classes, RBD tables) 
for domain definitions

• DCMs are not themselves part of the 
software (some generated artefact might be)
• This is the raison d’être for DCMs – to get out of 

the mess of endlessly growing and 
unmaintainable software and databases



© Thomas Beale 2011

Based on an underlying ... means

 The underlying model provides the ‘primitives’ 
needed for DCM modelling

 DCMs don’t have to redefine these primitives
 Therefore, such primitives are commonly 

required patterns for doing DCMs
 Insufficient patterns in the underlying model
 DCM authors continually re-invent basics
 multiple authors / orgs will re-invent them in 

different, non-interoperable ways



© Thomas Beale 2011

Based on an underlying ... means

 What relationship of DCMs to the ULM?
 We assume that the ULM provides a shared 

definition of data and (some) semantics, i.e. 
 Basis of at least data interoperability
 And potentially software interoperablity

 Therefore... DCMs cannot ‘break’ the ULM



© Thomas Beale 2011

Based on an underlying ... means

 Possible mathematical relationships that allow 
this have a notion of formal conformance

 Including:
 Constraint
 Extension

 Where in all cases the DCM entity cannot 
invalidate a data instance of the ULM entity



© Thomas Beale 2011

In other words...

 The golden rule is that:
 Every instance of a DCM element is also a valid 

instance of the corresponding ULM element

 Breaking this rule 
  non-interoperable DCM instances
 No assumptions can be made by software



© Thomas Beale 2011

Based on an underlying ... means

 However...
 The definitions provided for DCM purposes do not 

need to be full implementable definitions!
 Instead, they only need to consist of those data 

elements that need to be specifically constrained in 
DCMs

 And that guarantee data interoperability

 This should reduce the complexity of the ULM 
DTs

 We can think of these as model patterns



© Thomas Beale 2011

DT Concrete requirements

 The underlying model is often considered to 
consist of:
 Data types (DTs)
 Reference Model (RM) – higher structures

 In fact it would make more sense to just talk 
about ‘reference model’, but ... too late!

 The DTs and RM should consist of patterns that 
allow good DCM modelling



© Thomas Beale 2011

About the Reference Model
 Data Types are the most basic patterns 

required
 The Reference Model is just higher-level 

patterns



© Thomas Beale 2011

Therefore...

 Rather than debating what reference model 
among published EHR and other models 
should be used, we should...

 Identify the key patterns needed for creating 
real DCMs

 And define our DCM-RM based on that



© Thomas Beale 2011

Therefore...

 The DCM-RM should also provide good 
semantics for computing with data

 It if doesn’t, it means there is a gap between 
how data are logically represented and how 
they are processed – this should be avoided 
where possible



© Thomas Beale 2011

What is an RM pattern?

 A well-known one is the Actor-participation-
entity one
 Ubiquitous in systems, 
 Described by Martin Fowler in 1997 book “Analysis 

Patterns”
 Used in HL7 RIM & derivatives (inc. CDA), 

EN13606, openEHR and many other places

 We are looking for things like this, expressed 
in a clean, clear, minimalistic way



© Thomas Beale 2011

How to find patterns

 Method #1
 Sit down for years and think really hard

 Method #2
 Create a model with some patterns and try to 

build DCMs from it

 Method #3
 Comb existing models, literature etc for good 

patterns and steal them...



© Thomas Beale 2011

How to find patterns

 All methods work
 We have limited time now
 But a lot of experience with existing models



© Thomas Beale 2011

How openEHR did it...

 Building an initial RM
 By trying to build archetypes over 10 years...
 And changing the RM so provide the required 

patterns



© Thomas Beale 2011

openEHR RM patterns
Pattern Description

+ data / state / 
protocol 
(/reasoning)

In observation data, separate out data (actual datum being recorded 
e.g. BP) from patient state (e.g. lying, standing) and protocol (cuff 
type, instrument type)

+ History of events Provide a structure containing 1..* Events, allowing data and patient 
state at each one, supporting intervals, point events, and math 
functions, e.g. ave/delta/max/min

+ Tree structure Generalised free-form tree for containing clusters of data items, e.g. 
the 5+1 Apgar items, numerous microbiology result items, etc.

++ Order state 
machine

A way of recording current state in progression through a standard 
state machine applying to any ‘order’

++ Composition / 
document

An aggregation concept acting as a ‘bucket’ for information recorded 
by a professional at a given time for a given subject of care.

+ Participation A pattern defining the connection between parties (people, 
organisations, devices) and other information.

+++ Party / role / 
accountability

A pattern defining relationships between parties, including those 
that are roles played by some underlying actor.



© Thomas Beale 2011

#1 – Observation data/state/protocol

These 3 things 
potentially apply 
to nearly every 
scientific 
observation

But if mixed up, 
make the data 
hard to 
compute with 



© Thomas Beale 2011

Why it’s useful
 Helps separate things like ‘exercise’, ‘cuff size’ 

and ‘mean arterial pressure’
 Designers know where to put specific data 

points



© Thomas Beale 2011

Why it’s useful

 UI designers know what is needed on the screen 
(data + state) and what can be optionally 
displayed (protocol)

 Developers know where to find the actual data 
e.g. to draw a trend – systolic pressure will 
never be mixed up with patient position or 
instrument type...



© Thomas Beale 2011

#2 – History of Events



© Thomas Beale 2011

Why it’s useful

 Supports Point and Interval Event types, periodic, 
aperiodic

 Allows software to treat 1 sample like N samples



© Thomas Beale 2011

Why it’s useful

 Supports overlapping events



© Thomas Beale 2011

Why it’s useful

 Supports any complexity of data at each sample



© Thomas Beale 2011

Why it’s useful
 Supports per-sample or separate history for state 

information

 Good for 
OGTT 

 Good for 
sports 
medicine 



© Thomas Beale 2011

Why it’s useful

 Supports math 
functions like 
max, min, ave, 
diff



© Thomas Beale 2011

Why it’s useful

 Supports efficient compression of high-
frequency device data 



© Thomas Beale 2011

#3 – Basic tree structure



© Thomas Beale 2011

Why it’s useful

 Every model 
has it 

 Real data are 
fractal



© Thomas Beale 2011

#4 – Order state machine



© Thomas Beale 2011

#4 – Order state machine



© Thomas Beale 2011

Why it’s useful

 Supports Action tracking over time



© Thomas Beale 2011

Why it’s useful

 Supports ‘careflow’ steps that are specific to order 
type and maps them to standard states to support 
standard querying for:
 What is active?
 What is suspended?
 What is booked?
 What is stopped / cancelled / ...?



© Thomas Beale 2011

Why it’s useful

 Careflow steps – follow-up action



© Thomas Beale 2011

Why it’s useful

 Careflow steps – medication action



© Thomas Beale 2011

#5 – Composition / document



© Thomas Beale 2011

Why it’s useful

 Defines the container in which data items for a 
given event are captured

 Coupled with versioning (supplied elsewhere in 
openEHR), defines a fully version-controlled health 
record document 



© Thomas Beale 2011

#6 – Participation

A standard 
model of 
participation is 
needed...



© Thomas Beale 2011

#6 – Participation

... That can be 
reused in the 
rest of the 
model



© Thomas Beale 2011

Why it’s useful

 (nearly) every action is performed by some agent, 
or ‘participant’

 Some form of this pattern is found in HL7 RIM, 
CDA, EN13606, openEHR



© Thomas Beale 2011

#7 – Demographic relationships



© Thomas Beale 2011

Why it’s useful

 Where demographic concepts like families, teams, 
employment etc are required

 Separates out actors, roles and posts.



© Thomas Beale 2011

Conclusions

 openEHR’s patterns are not the only ones, and 
are not perfect
 In fact we have found a new variant of the ‘tree’ 

pattern that is needed for health data
 Participation could be improved; see e.g. Singapore 

LIM

 But archetypes based on them provide a useful 
guide to their utility



© Thomas Beale 2011

Conclusions

 Remember that for the purposes of DCM 
building, not all aspects of a ‘reference model’ 
as published are required
 Because not all elements need to be archetyped



© Thomas Beale 2011

Conclusions



© Thomas Beale 2011

My recommendations

 A. The key is to define an RM consisting of the 
key patterns that need to be archetyped / 
constrained in DCMs, leaving out details of 
messaging etc

1. Some of openEHR’s RM is potentially directly usable 
for this purpose, due to the archetype history

2. Some pieces of other models also useful – see e.g. 
Singapore LIM, various CDA patterns etc



© Thomas Beale 2011

My recommendations

 B. Don’t start ‘building’ this DCM-RM as a 
separate exercise; instead, define some key 
archetypes to be built and use these to 
determine what bits of the RM are needed

 C. Convertability of DCMs based on the DCM-
RM to real world RMs has to be considered.



© Thomas Beale 2011

Resources

 openEHR ADL Workbench
 openEHR specifications

http://www.openehr.org/svn/ref_impl_eiffel/TRUNK/apps/adl_workbench/doc/web/index.html�
http://www.openehr.org/releases/1.0.2/roadmap.html�

	DCMs and the Reference Model
	[note]
	Assumptions
	Based on an underlying ... means
	Based on an underlying ... means
	Based on an underlying ... means
	In other words...
	Based on an underlying ... means
	DT Concrete requirements
	About the Reference Model
	Therefore...
	Therefore...
	What is an RM pattern?
	How to find patterns
	How to find patterns
	How openEHR did it...
	openEHR RM patterns
	#1 – Observation data/state/protocol
	Why it’s useful
	Why it’s useful
	#2 – History of Events
	Why it’s useful
	Why it’s useful
	Why it’s useful
	Why it’s useful
	Why it’s useful
	Why it’s useful
	#3 – Basic tree structure
	Why it’s useful
	#4 – Order state machine
	#4 – Order state machine
	Why it’s useful
	Why it’s useful
	Why it’s useful
	Why it’s useful
	#5 – Composition / document
	Why it’s useful
	#6 – Participation
	#6 – Participation
	Why it’s useful
	#7 – Demographic relationships
	Why it’s useful
	Conclusions
	Conclusions
	Conclusions
	My recommendations
	My recommendations
	Resources

