## DCMs and the Reference Model

Thomas Beale, for San Diego, Sep 2011

© Thomas Beale 2010

## [note]

## Slides 3-9 identical to DCM\_and\_datatypes slides



#### Assumptions

- DCMs are based on an underlying model (ULM), rather than each being an independent model (e.g. Classes, RBD tables) for domain definitions
- DCMs are not themselves part of the software (some generated artefact might be)
  - This is the raison d'être for DCMs to get out of the mess of endlessly growing and unmaintainable software and databases



- The underlying model provides the 'primitives' needed for DCM modelling
- DCMs don't have to redefine these primitives
- Therefore, such primitives are commonly required patterns for doing DCMs
- Insufficient patterns in the underlying model
  - $\rightarrow$  DCM authors continually re-invent basics
  - → multiple authors / orgs will re-invent them in different, non-interoperable ways



- What relationship of DCMs to the ULM?
- We assume that the ULM provides a shared definition of data and (some) semantics, i.e.
  - Basis of at least data interoperability
  - And potentially software interoperablity
- Therefore... DCMs cannot 'break' the ULM



- Possible mathematical relationships that allow this have a notion of formal conformance
- Including:
  - Constraint
  - Extension
- Where in all cases the DCM entity cannot invalidate a data instance of the ULM entity



#### In other words...

- The golden rule is that:
  - Every instance of a DCM element is also a valid instance of the corresponding ULM element
- Breaking this rule
  - non-interoperable DCM instances
  - No assumptions can be made by software



#### However...

- The definitions provided for DCM purposes do not need to be full implementable definitions!
- Instead, they only need to consist of those data elements that need to be specifically constrained in DCMs
- And that guarantee data interoperability
- This should reduce the complexity of the ULM DTs
- We can think of these as model patterns



#### DT Concrete requirements

- The underlying model is often considered to consist of:
  - Data types (DTs)
  - Reference Model (RM) higher structures
- In fact it would make more sense to just talk about 'reference model', but ... too late!
- The DTs and RM should consist of patterns that allow good DCM modelling



#### About the Reference Model

- Data Types are the most basic patterns required
- The Reference Model is just higher-level patterns



#### Therefore...

- Rather than debating what reference model among published EHR and other models should be used, we should...
- Identify the key patterns needed for creating real DCMs
- And define our DCM-RM based on that



#### Therefore...

- The DCM-RM should also provide good semantics for computing with data
- It if doesn't, it means there is a gap between how data are logically represented and how they are processed – this should be avoided where possible



## What is an RM pattern?

- A well-known one is the Actor-participationentity one
  - Ubiquitous in systems,
  - Described by Martin Fowler in 1997 book "Analysis Patterns"
  - Used in HL7 RIM & derivatives (inc. CDA), EN13606, openEHR and many other places
- We are looking for things like this, expressed in a clean, clear, minimalistic way



## How to find patterns

- Method #1
  - Sit down for years and think really hard
- Method #2
  - Create a model with some patterns and try to build DCMs from it
- Method #3
  - Comb existing models, literature etc for good patterns and steal them...



### How to find patterns

- All methods work
- We have limited time now
- But a lot of experience with existing models



#### How openEHR did it...

- Building an initial RM
- By trying to build archetypes over 10 years...
- And changing the RM so provide the required patterns



#### openEHR RM patterns

0

| Pattern                                      | Description                                                                                                                                                            |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| + data / state /<br>protocol<br>(/reasoning) | In observation data, separate out data (actual datum being recorded<br>e.g. BP) from patient state (e.g. lying, standing) and protocol (cuff<br>type, instrument type) |
| + History of events                          | Provide a structure containing 1* Events, allowing data and patient state at each one, supporting intervals, point events, and math functions, e.g. ave/delta/max/min  |
| + Tree structure                             | Generalised free-form tree for containing clusters of data items, e.g. the 5+1 Apgar items, numerous microbiology result items, etc.                                   |
| ++ Order state<br>machine                    | A way of recording current state in progression through a standard state machine applying to any 'order'                                                               |
| ++ Composition /<br>document                 | An aggregation concept acting as a 'bucket' for information recorded<br>by a professional at a given time for a given subject of care.                                 |
| + Participation                              | A pattern defining the connection between parties (people, organisations, devices) and other information.                                                              |
| +++ Party / role /<br>accountability         | A pattern defining relationships between parties, including those that are roles played by some underlying actor.                                                      |

#### #1 - Observation data/state/protocol

These 3 things potentially apply to nearly every scientific observation

But if mixed up, make the data hard to compute with





- Helps separate things like 'exercise', 'cuff size' and 'mean arterial pressure'
- Designers know where to put specific data points



- UI designers know what is *needed* on the screen (data + state) and what can be optionally displayed (protocol)
- Developers know where to find the actual data e.g. to draw a trend – systolic pressure will never be mixed up with patient position or instrument type...



#### #2 - History of Events





- Supports Point and Interval Event types, periodic, aperiodic
- Allows software to treat 1 sample like N samples



Supports overlapping events





Supports any complexity of data at each sample



#### openEHR

© Thomas Beale 2011

Supports per-sample or separate history for state information

HISTORY OBSERVATION data protocol origin EVENT EVENT EVENT Good for time time time state  $OGTT \rightarrow$ state data state data data state at time of each event **OBSERVATION** HISTORY data protocol origin EVENT EVENT EVENT time time time state data data data HISTORY origin EVENT EVENT time time independent state information data data openEHR

Good for sports medicine  $\rightarrow$ 

 Supports math functions like max, min, ave, diff





 Supports efficient compression of highfrequency device data



5 x INTERVAL\_EVENT instances



#### #3 - Basic tree structure





- Every model has it <sup>(C)</sup>
- Real data are fractal



| Adverse Reaction                         |             |
|------------------------------------------|-------------|
| → data                                   |             |
| En tree                                  |             |
| ≟ ∉ items                                |             |
| 🗄 🗰 🐌 Substance/Agent                    |             |
| 🚊 🕪 Absolute Contraindication?           |             |
| $\exists$ $\rightarrow$ value            |             |
| ±                                        |             |
| 🗄 🗰 🐌 Overall Comment                    |             |
| 🗄 📲 Reaction Event                       |             |
| items                                    |             |
| 👳 👜 Specific Substance/Agent             |             |
| 👳 👜 Manifestation                        |             |
| 👳 👜 Reaction Type                        |             |
| 🚊 🖉 🏟 Certainty                          |             |
| '⊡… → value                              |             |
| ⊡ <b>₂</b> , <b>Ţ</b> ,                  |             |
| $ \pm                                $   |             |
| 🕀 🗰 Reaction Description                 |             |
| 🕂 🖤 🔴 Onset of Reaction                  |             |
| Duration of Reaction                     |             |
| 😑 📲 Additional Reaction Detail           |             |
| archetype_id/value matches {/openEHR-EHI | R-CLUSTER\. |
| 🕀 🗰 Exposure Description                 |             |
| 🕀 🗰 Earliest Exposure                    |             |
| 🕀 🖤 Duration of Exposure                 |             |
| 🖃 📲 🛛 Additional Exposure Detail         |             |
| archetype_id/value matches {/openEHR-EHI | R-CLUSTER\. |
| 🕀 🖗 Clinical Management Description      |             |
|                                          |             |

#### #4 - Order state machine



#### #4 - Order state machine



Supports Action tracking over time





© Thomas Beale 2011

- Supports 'careflow' steps that are specific to order type and maps them to standard states to support standard querying for:
  - What is active?
  - What is suspended?
  - What is booked?
  - What is stopped / cancelled / ...?



Careflow steps – follow-up action





Careflow steps – medication action



openehk

#### #5 - Composition / document



- Defines the container in which data items for a given event are captured
- Coupled with versioning (supplied elsewhere in openEHR), defines a fully version-controlled health record document



#### #6 - Participation

A standard model of participation is needed...





#### #6 - Participation

... That can be reused in the rest of the model





- (nearly) every action is performed by some agent, or 'participant'
- Some form of this pattern is found in HL7 RIM, CDA, EN13606, openEHR



#### #7 - Demographic relationships



- Where demographic concepts like families, teams, employment etc are required
- Separates out actors, roles and posts.



#### Conclusions

- openEHR's patterns are not the only ones, and are not perfect
  - In fact we have found a new variant of the 'tree' pattern that is needed for health data
  - Participation could be improved; see e.g. Singapore LIM
- But archetypes based on them provide a useful guide to their utility



#### Conclusions

- Remember that for the purposes of DCM building, not all aspects of a 'reference model' as published are required
  - Because not all elements need to be archetyped



#### Conclusions





#### My recommendations

- A. The key is to define an RM consisting of the key patterns that need to be archetyped / constrained in DCMs, leaving out details of messaging etc
  - Some of openEHR's RM is potentially directly usable for this purpose, due to the archetype history
  - 2. Some pieces of other models also useful see e.g. Singapore LIM, various CDA patterns etc



#### My recommendations

- B. Don't start 'building' this DCM-RM as a separate exercise; instead, define some key archetypes to be built and use these to determine what bits of the RM are needed
- C. Convertability of DCMs based on the DCM-RM to real world RMs has to be considered.





- openEHR ADL Workbench
- openEHR specifications

